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a b s t r a c t

The Fold Geometry Toolbox (FGT) provides a quick and quantitative shape analysis of generic, two-
dimensional single and multilayer fold trains. Fold geometry is described using four basic parameters:
fold arclength, amplitude, wavelength, and thickness. Several existing definitions of these parameters are
implemented and in the case of thickness a new one is proposed. The advantage of FGT over existing
tools is that it uses normalized and parameterized data representations, which ensure that the outcome
of the analysis is invariant to rigid-body motions and dilation. FGT can deal with noisy interfaces and
implements a new combination of filters that automates the identification of hinges and inflection
points, minimizing the user input. In the final step of the analysis, FGT relates the obtained geometry
parameter values to mechanical properties and shortening of folded layers. We demonstrate the use of
FGT with data from a finite element simulation and a natural case. FGT is open source, written in
MATLAB, and comes with a graphical user interface.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The notion that a relationship exists between fold shapes,
material properties, and driving forces goes back to the very
beginning of structural geology. Already in the early nineteenth
century Sir James Hall devised analogue and thought experiments
to explain the mechanism that formed the folds in the southern
Uplands of Scotland (Hall, 1815). For the case of a single layer, Biot
(1957) and Ramberg (1963) analytically studied the relationship
between the ratio of layer and matrix material properties and the
ratio of dominant wavelength (Ld) to thickness (T) for linear viscous
and elastic materials. Fletcher (1974) and Smith (1977) derived the
corresponding expression for a non-linear viscous rheology. These
analytical solutions are only valid for infinitesimal interface
perturbations and Ld/T must be adjusted for both shortening and
layer thickening (Sherwin and Chapple, 1968; Fletcher and
Sherwin, 1978). Subsequently, a method to estimate bulk short-
ening and material property ratio from large amplitude fold shapes
was developed by Schmalholz and Podladchikov (2001) based on
theoretical considerations and numerical experiments.

The description of fold shape in two dimensions exploits various
geometry descriptors as well as signal processing tools (e.g., Stabler,
change.
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1968; Hudleston, 1973; Twiss, 1988). Recent contributions include
Bézier curves, conic sections, power functions, and superellipses
(e.g., Bastida et al., 1999, 2005; Aller et al., 2004; Srivastava and
Lisle, 2004; Lisle et al., 2006; Liu et al., 2009b). However, the
mechanical theory of folding only links to a simple set of parame-
ters describing fold geometry: fold arclength, amplitude, wave-
length, and thickness. To enable the analysis of fold characteristics
in the context of fold mechanics, it is crucial that these four
parameters can be determined accurately, objectively, and fast.
Consequently, we developed the fold geometry toolbox (FGT). FGT
is an open source MATLAB application with a graphical user inter-
face that largely automates fold characterization in two dimen-
sions. No component of FGT is in itself pioneering, but rather the
focus was to create a tool that fulfills the following conditions: (1)
capable of dealing with generic fold shapes and noisy interfaces, (2)
minimal operator bias (Chadwick, 1975), (3) invariant to rigid-body
movement.
2. Fold geometry parameters

A fold is confined between two inflection points, i.e. the points
where the interface curvature changes its sign. The point of local
extremum of curvature is called the hinge. The fold geometry
parameters of interest in our study are: fold arclength (L), ampli-
tude (A), wavelength ðlÞ, and thickness (h). The literature only
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provides an unambiguous definition for the arclength. We there-
fore review the various definitions of other parameters and
examine their a) unambiguity, b) applicability to generic fold
geometries, and c) independence of coordinate system choice.
Based on this analysis, we select the definitions that we implement
in FGT. Note that the employed definitions of a fold only refer to
a single interface of a layer, because it is not possible to ensure
corresponding inflection and hinge points exist on the two inter-
faces of a layer. The exception is thickness, which is described
below.
2.1. Arclength

The arclength s is the least disputed parameter because it is
simply the interface length between two points (t1 and t2) on it.
Using a parametric representation where interface point coordi-
nates x and y are functions of parameter s

s ¼
Zt2

t1

�
x0ðsÞ2þy0ðsÞ2

�1=2
ds (1)

where the prime denotes the first derivative with respect to s. Note
that “fold arclength” L is actually twice the arclength between two
inflection points. The reason for this modification is that fold
arclength is used here in conjunction with wavelength, which
refers to the full period.
Fig. 1. Amplitude definitions applied to a synthetic fold. Letters A to I correspond to
2.2. Amplitude

Fold amplitude has been defined as:

A. The distance between the line joining two inflection points and
the extremity of the fold (Ramsay and Huber, 1987).

B. The distance from the hinge to the line joining two inflection
points (Park, 1997).

C. The distances between the inflection points and the line
tangent at the hinge (Hudleston, 1973). In FGT, we use the
average of these two values.

D. The distance between the median trace and the fold hinge
(Price and Cosgrove, 1990).

E. The distance between the median trace and the hinge point
measured along the axial trace (Davis and Reynolds, 1996;
Twiss and Moores, 2007).

F. Half of the limb height measured parallel to the axial trace
(Matthews, 1958).

G. Half the distance between two enveloping surface traces
defined perpendicular to these interfaces (Turner and Weiss,
1963).

H. Half of the vertical hinge distance (Schmalholz, 2006).
I. Half of the height measured from crest to trough (van der

Pluijm and Marshak, 2004).

These amplitude definitions are applied to a synthetic fold and
analysed in Fig. 1. We abandon definitions D, E, F, and G due to the
the definitions listed in section 2.2. * indicates methods implemented in FGT.
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lack of precision in the description of the traces of median, axial, and
enveloping surfaces. The median surface trace refers to the interface
that joins the inflection points without specifying the shape in
between these points (e.g., Twiss andMoores, 2007). We use a piece-
wise linear curve (Fig.1D and E), which causes the definitions B and D
to coincide. The axial surface trace refers to the interface that joins
hinges on adjacent fold surfaceswithout describing the exact shape in
between (e.g., Twiss and Moores, 2007). We use a straight line
representation (Fig. 1E and F). Similarly, the enveloping surface trace,
which is defined as the interface that bounds the fold train, lacks
a shape description (e.g., Twiss and Moores, 2007). The enveloping
surface trace in Fig. 1G is presented as the tangent to two alternating
folds. Definition G is ambiguous as the two enveloping surface traces
need not be parallel. Thus, in Fig. 1G we plot the amplitude along the
line perpendicular to one enveloping surface trace only. Definitions
H and I are not invariant with respect to rotation and therefore
discarded. Consequently, only A, B, and C are used in FGT.
2.3. Wavelength

The wavelength of a fold is described as (Fig. 2):

A. Twice the distance between adjacent inflection points (Ramsay
and Huber, 1987; Price and Cosgrove, 1990).

B. The distance between alternating hinges (van der Pluijm and
Marshak, 2004). The method is applicable only to fold train
that consists of more than three folds. In FGT, we use the
average value if more than one wavelength can be constructed
for a specific fold.

C. Four times the distance between the hinge and the point on the
tangent at the hinge that has the shortest distance to the
adjacent inflection points (Hudleston, 1973). For each fold, the
average value of the two wavelengths is used in FGT.
Fig. 2. Wavelength definition application to a synthetic fold. Letters A to H corresp
D. The distance between alternating inflection points (Price and
Cosgrove, 1990). We use the average of two values that corre-
spond to one fold.

E. The horizontal hinge distance (Schmalholz, 2006).
F. Twice the axial trace separation measured perpendicular to

axial trace (Matthews, 1958)
G. The distance between inflection points measured along the

median trace (Davis and Reynolds, 1996).
H. The distance between geometrically similar points on alter-

nating folds measured parallel to the median trace (Twiss and
Moores, 2007).

E is discarded because it is not invariant with respect to rotation.
F, G, and H are abandoned due to ambiguous median and axial
surface trace definitions. Since axial traces are not parallel, defini-
tion F is represented by two lines, each perpendicular to one axial
trace. Assuming piecewise linear median surface traces, A and G
coincide. For general fold shapes, H only works for inflection points,
which again results in A. Hence, four definitions, A, B, C, and D,
fulfill our criteria and are implemented in FGT.

2.4. Thickness

We found two definitions of fold thickness (Fig. 3):

A. The distance between the fold interfaces, measured perpen-
dicular to one interface (Sherwin and Chapple, 1968).

B. The distance between two parallel lines tangent to the upper
and lower fold interface (dip-isogon method, Ramsay, 1967)
measured either parallel to the axial plane or perpendicular to
the constructed lines.

A1 and A2 in Fig. 3 illustrate the problems with definition A,
because the thicknesses from using the lower and upper interface
ond to the definitions in section 2.3. * indicates methods implemented in FGT.



Fig. 3. Application of thickness definitions. A1 Thickness measured perpendicular to
the bottom interface. A2 Thickness measured perpendicular to the top interface. B1
Thickness measured between set of two parallel lines tangent to the upper and lower
interface and parallel to the axial surface ðTaÞ. B2 Thickness measured as a distance
between parallel lines tangent to the upper and lower interface ðtaÞ.
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are different. The latter case also results in lines originating from
the hinge region that are sub-parallel to the limbs. For the dip-
isogon method, the thickness defined parallel to the axial surface
is inaccurate due to imprecise definition of the axial surface (Fig. 3).
It also produces thickness lines that approach the orientation of the
fold limbs. Definition B clearly overestimates the expected fold
thickness. Furthermore, B is not applicable to generic fold shapes as
noise and complex geometries may prevent the identification of
meaningful pairs of tangents.

We suggest two alternative methods for calculating fold thick-
ness. If only the average thickness of an entire fold train is required,
one can measure the layer area and divide by the average arclength
of the two interfaces (Fig. 4). However, the average value of an
entire train may not be representative for individual folds. The
second approach defines the thickness of individual folds, which
we later refer to as a “local thickness”. The fold train is divided into
discrete folds based on the solution of Laplace’s equation

V2F ¼ 0 (2)

with the following boundary conditions

F ¼ 0 on vUL
vF

vn
¼ 0 on vUT

F ¼ 1 on vUR
vF

vn
¼ 0 on vUB

(3)

vUT and vUB are the upper and lower fold interface, respectively,
and vUR and vUL represent the left and right fold boundary,
Fig. 4. Average thickness calculated as a ratio of the area between two interfaces and
the average arclength.
constructed by connecting the fold interfaces. We obtain the solu-
tion using a finite element method solver (MILAMIN by Dabrowski
et al., 2008) (Fig. 5A).

Due to the zero-flux boundary conditions, these contours are
everywhere orthogonal to the fold interface. The iso-contours allow
the finding of a set of analogous points on both interfaces, and thus
facilitate a division of the fold train into separate folds. As by
definition folds are limited by inflection points, the values F at
these points should define the fold domain boundaries inside the
layer. The corresponding points are identified on both interfaces
and connected with a straight line. Since the inflection points on
the upper and lower interface do not lie on the same iso-contour
(Fig. 5A), the fold division is made separately based on the lower
and upper interface (Fig. 5B and C). For each fold, the thickness is
calculated by dividing the segment area by the average segment
arclength.

3. Curvature, inflection points, and hinges

3.1. Parametric curvature

Curvature K is a measure of the interface deviation from being
straight. We employ the parametric form of curvature to satisfy our
criteria that the FGT measures work for arbitrary shapes and are
invariant to rotation:

K ¼ x0y00 � y0x00�
x02 þ y02

�3=2 (4)

3.2. Discrete curvature

The discrete curvature calculation inside FGT operates on
irregularly spaced input data. The technique approximates the
derivatives by calculating the derivatives of a polynomial that
locally interpolates between data points (e.g. Hildebrand, 1987).
The order of the polynomial can be chosen to fit the data exactly or
it can be lower and essentially acts as a low-pass filter. These two
methods are used in FGT. The user can fit a second-order poly-
nomial to the parameterized x and y coordinates of sets of three,
five, or seven points. Here, the choice of three points results in the
exact fit of the polynomial, whereas the other two options employ
Fig. 5. Local thickness based on the solution of Laplace’s equation. A) Iso-contours F
are used to identify corresponding points on two fold interfaces. B) Division of folds
based on the location of inflection points on the lower interface. C) Division of folds
based on the location of inflection points on the upper interface.



Fig. 6. Effect of Gaussian smoothing using different filter width on the curvature and number of detected inflection points.
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the low-pass filter. The derivatives are evaluated at the central
point. In case of nodes so close to the boundary that their curvature
calculation would require points outside the domain, the poly-
nomial is fitted to the marginal set of points and the derivatives
calculated for the respective points. Fitting a second-order poly-
nomial to a set of five or sevenpoints is only recommended for folds
with poor shape approximations such as stair-step like interface
shapes that may result from pixel image digitization.
3.3. Curvature smoothing

Natural folds rarely have smooth interfaces and additional noise
may be introduced by the digitization process. The resulting discrete
curvature can be noisy and cause detection of a large number of false
hinges and inflection points (Fig. 7A). We employ a Gaussian filter to
reduce curvature oscillations. This filter is a weighted, moving
average method, where the value in each data point is replaced by
the weighted average of values within the smoothing window of
size J. The smoothed curvature in a point sj is

~KðsjÞ ¼

Xn
i¼1

wi$KðsiÞ

Xn
i¼1

wi

(5)

The weights wi are evaluated based on the arclength between
points si and sj:

wi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e�ðsi�sjÞ2=2s2
(6)

where the standard deviation s is set to j=6 This method is suitable
for irregularly spaced data and allows for any number of data points
within the filter window.

The amount of smoothing and consequently the number of
detected hinge and inflection points is controlled by the width of
the smoothing filter. The filter width is not a priori known andmust
be user specified. To facilitate this selection, we systematically scan
through the possible range of filter widths, i.e. from the shortest
distance between the input points to the arclength of the entire fold
train, and analyse the number of resulting inflection points. Plotting
the number of inflection points versus the filter width results in
a NIP-FW (Number of Inflection Points - Filter Width) diagram. On
this diagram plateaus correspond to folds on different scales. Some
plateaus may represent true folds while others would usually be
classified as noise. Since this distinction is somewhat arbitrary and
application specific, we let the user make this choice.

For a chosen filter width, the FGT plots original and smoothed
curvature versus arclength, including the detected hinge and
inflection points. These points are also plotted on the actual fold
interfaces. This procedure allows for quick determination of the
suitable smoothing filter width (Fig. 6). The NIP-FW shows five
regimes of alternating plateaus and ramps. The plateau at small
filter width is due to the presence of small-scale perturbations that
are larger than the smallest point distance (Fig. 6A). Large filter
widths smooth these perturbations and progressively decrease the
number of inflection points, represented by a ramp on the NIP-FW.
The second plateau appears when the filter size is large enough to
smooth the noise but too small to affect the fold shape (Fig. 6B).
Choosing a filter width from this plateau results in the most
favorable inflection point detection. A further increase of the filter
width causes over-smoothing of the curvature, which results in
a decrease of the number of inflection points towards zero (Fig. 6C).
3.4. Inflection points

Even after the application of a reasonable smoothing window,
the number of detected inflection points may not be satisfactory
(cf. Fig. 7A and B). This can be caused by interface segments that
are almost straight and show small curvature variations around
zero. In FGT, we only consider folds with considerable arclength
and curvature. The selection criterion is the integral of the abso-
lute curvature along the arclength between inflection points. If an
individual value is smaller than a certain percentage, by default set
to 10%, of the average of all values then the curvature between the
corresponding inflections is set to zero. If the curvature changes



Fig. 7. Curvature and resulting inflection points. A) Original curvature. B) Smoothed curvature. C) Smoothed curvature with the ‘small areas’ removed.
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sign around this segment, we place an inflection point at its
middle (Fig. 7C).

3.5. Hinges

A hinge is the point of local extremum of curvature between two
inflection points. This criterion is employed as the standardmethod
in the FGT. This definition fails for concentric folds, where the
curvature is constant. To deal with such cases, FGT provides
a second, user selectable, method of hinge positioning whereby all
points in curvature-arclength space between inflection points are
fitted to a second-order polynomial. The local extremum of this
polynomial represents the hinge.

Cases withmultiple local extrema of curvaturemay occur and are,
in fact, common due to noise. With the exception of perfect,
synthetically generated box folds, it is unlikely that several such
hinges have exactly the same curvature value. Furthermore, no defi-
nition for amplitude or wavelength deals with multiple hinges (see
section2.2 and2.3). Therefore, FGTdetects only onehingeper fold, i.e.
the one characterized by the highest absolute value of curvature.
4. Estimation of material properties and shortening

In the final step of the FGT analysis, we provide estimates of
shortening andmaterial properties, using a variety of analytical and
numerical approaches. The analytical solutions include thin-plate
analysis of folding of elastic and viscous layers (Biot, 1961, 1965;
Ramberg, 1961; Currie et al., 1962; Fletcher, 1974) and the thick-
plate solution for viscous single layer folds (Fletcher, 1977). We
also include methods that consider finite strain (Sherwin and
Chapple, 1968; Fletcher and Sherwin, 1978; Schmalholz and
Podladchikov, 2001).

Methods that are not corrected for finite strain require the initial
(infinitesimal amplitude) fold wavelength to thickness ratio. As
a proxy, we use the final fold arclength to thickness ratio (L/h)
(Sherwin and Chapple, 1968). In FGT, L/h is calculated per fold train
as the ratio of average fold arclength to average thickness. Note that
in FGT all means are arithmetic means and ratios are those ratios of
already averaged values. The only exception is the method by
Fletcher and Sherwin (1978), where the ratios computed for indi-
vidual folds are used.



Fig. 8. FGT flow chart.
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5. Flow chart

FGT is used to perform the following tasks (Fig. 8):

i. Load Fold Train.

Three different input types can be processed. 1) MATLAB files
that contain a fold train structure (see Appendix A). 2) Scalable
Fig. 9. A) NIP-FW plot with a selected filter width. The circles show the relation between t
upper (U1) and lower interface (L1) and the solid lines show the additional influence of th
points. C) Original and smoothed curvature with identified hinges and inflection points.
vector graphics (SVG) files that contain the result of an image
digitization in a vector graphics program (see Appendix B). 3)
Images of folds. In the last case, FGT provides a tool for digitization.
However, the capabilities of method 3 are minimal and we suggest
option 2 instead. All length measurements are normalized by the
arclength of the first fold interface.

ii. Compute and Smooth Curvature.

The parameterized curvature is calculated based on second-order
polynomials that are locally fitted, by default, to a set of three points.
The effect of curvature smoothing using a Gaussian filter is tested,
where for 30 different filter widths the number of inflection points is
determined. A diagram of filter width and corresponding number of
inflection points is produced (NIP-FW diagram). The curvature is
initially smoothedwithadefaultfilterwidthof 0.01 and the inflection
points are identified. Folds are eliminated that have a product of
average curvature and arclength below a certain percentage, by
default set to 10%, of its mean value (‘small area’ filter). Finally, only
one hinge point is determined for each fold. The hinges and inflection
points are plotted on the fold and the curvature plots.

The user can change: a) filter width, b) number of points based
on which the curvature is calculated, c) ‘small area’ filter, and d)
hinge method.

iii. Compute Amplitude and Wavelength.

Based on the detected hinges and inflection points, amplitude
and wavelength are determined using methods described in
sections 2.2 and 2.3. The average value is calculated.

iv. Compute Thickness.

Local and average thickness are calculated. The fold train is
divided into individual folds. The values of the average thickness
and average local thickness are compared.

v. Determine shortening and material properties.

The geometrical parameters are used to calculate shortening
and material parameters.
he number of inflection points and filter width after applying a Gaussian filter on the
e ‘small area’ filter (U2 and L2). B) Fold interface with identified hinges and inflection



Table 1
Data for the single layer synthetic fold train normalized by the arclength of the lower
fold interface. The data from both interfaces are processed together. The letters
below the parameters correspond to the definitions of amplitude, wavelength, and
thickness presented in section 2. With the exception of the ratios, all actual values
are multiplied by 1000.

Parameter Mean value Min Max Standard deviation

L-Arclength 66.1 42.8 137 20.4
A-Amplitude
A 7.33 3.18 12.2 2.03
B 7.12 3.15 11.8 1.93
C 7.90 3.21 14.5 2.67
l-Wavelength
A 56.3 32.4 129 20.2
B 55.4 37.8 87.3 12.4
C 55.3 32.3 120 18.3
D 56.0 42.8 87.2 11.6
h-Thickness
A 5.02 4.94 5.09 0.0365
B 5.03 e e e

hLi=hhi 13.2 e e e

L/h 13.2 8.50 27.1 4.02
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6. Examples

Wesuccessfully tested the FGTon a range of natural and synthetic
folds, andwe provide the corresponding data files togetherwith FGT
for download. In this section, we present two cases: i) a synthetic
single layer and ii) a natural two-layer fold train.
Fig. 10. FGT figure that shows the implemented solutions w
6.1. Synthetic fold train

A synthetic fold train (Fig. 9) is obtained by applying the finite
element method code MILAMIN (Dabrowski et al., 2008) to
shorten a single layer and its matrix. Both are linear viscous fluids,
with the viscosity of the layer 100 times that of the matrix. The
initial perturbation of the layer interfaces is a red-noise, whose
maximum amplitude is 1/20 of the layer thickness. The layer and
matrix are shortened by 30%. The model width is 20 times the
expected dominant wavelength. The resulting folds exhibit shapes
ranging from gentle and wide to open and broad with rounded
hinge zones. The NIP-FW plot exhibits three distinct plateaus
(Fig. 9A). The first plateau occurs due to the presence of noise,
whereas the third one results from over-smoothing. The curvature
is calculated based on a set of three points and smoothed using
a filter width from the middle plateau (dashed line in Fig. 9A). The
value of the ‘small area’ filter is set to 10%. Hinges are defined with
the standard method. The identified hinges and inflection points
are plotted on the fold interface and curvature, respectively
(Fig. 9B and C).

Different definitions for amplitude and wavelength give overall
comparable average values of around 7.5*10�3 and 5.6*10�3,
respectively (Table 1) (all measurements are normalized by the
arclength of the lower interface). The span of values is similar
except for wavelength definitions A and C where higher variations
are observed. The average thickness and averaged local thickness
give similar values ofw5*10�3. The variability of the local thickness
is also small. The ratio of mean fold arclength to mean thickness is
similar to the mean ratio of fold arclength to thickness, w13.2.
ith the resulting values for the analysed synthetic fold.



Fig. 12. Quartz-feldspar dominated layer embedded in a biotite rich matrix (Lavik,
Norway).

Fig. 11. Strain and viscosity ratio after A) Fletcher and Sherwin (1978) (two dots represent the values for upper and lower interfaces), and B) Schmalholz and Podladchikov (2001)
(each dot represents a combination of various amplitude, wavelength, and thickness definitions for both upper and lower interfaces).
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The values for fold arclength, amplitude, wavelength, and
thickness are used to estimate the correspondence of the viscosity
ratio and shortening. These estimates are compared with the actual
values used to generate this synthetic model. The average arclength
to thickness ratio of 13.2 results in viscosity ratio of 55 according to
the thin-plate theory (Biot, 1961), and viscosity ratios of 48 and 51
according to the thick-plate theory (Fletcher, 1977) with no slip and
free slip boundary conditions, respectively (Fig. 10). These values
are substantially less than the actual viscosity ratio of 100. One
reason for this mismatch is that finite strain is not considered. In
this synthetic case, we have the advantage that we can directly
determine the actual layer thickening, which wasw25%, equivalent
to a layer-parallel shortening stretch of 0.8. Application of the
corresponding correction for finite strain (Sherwin and Chapple,
1968) yields a viscosity ratio of 105, a much better match. The
elastic, visco-elastic, multilayer and non-linear viscous relations in
Fig. 10 are irrelevant for this model.

The method by Fletcher and Sherwin (1978) yields a viscosity
ratio close to 85 (Fig. 11A), and indicates that the stretch at which
wavelength selection took place is w0.83. Using the method by
Schmalholz and Podladchikov (2001), the average amplitude to
average wavelength ratio and the average thickness to average
wavelength ratio cluster in one spot, irrespective of definition,
yielding an average viscosity ratio of w100 and an average bulk
shortening around 30% (Fig. 11B).

6.2. Natural fold train

A natural two-layer fold train (Fig. 12) is digitized using
a vector graphics software and exported as an SVG file to FGT
(Appendix B). The fold train has various fold shapes fromwide and
gentle to short and tight with sharp to rounded hinge zones. Some
shapes approximate concentric folds while others resemble box
folds. For this example, the seven point-based curvature
computation in combination with a Gaussian filter width of
around 0.0157 yields the most satisfactory results (Fig. 13A). The
small area filter is set to 10%.

The mean fold arclength in both fold trains is approximately
35*10�3 (Table 2) (all measurements are normalized by the
arclength of the lowermost interface). All definitions for the
amplitude andwavelength give comparable average values for both
interfaces of upper and lower layer equal to ca. 23*10�3 and
57*10�3, respectively. The data spans are again larger for wave-
length definitions A and B. The fold is divided into individual folds,
based on which the local thickness is calculated. The average layer
thicknesses are around 8*10�3 and 8*10�3 for the upper and lower
layer, irrespective of the method. The ratio of average fold arclength
to average thickness is around 8 for the upper fold train and around
16 for the lower one. Using the expression for amulti-(two) layer by
Biot (1965), we obtain a viscosity ratio with respect to the matrix of
53 for the upper and 6 for the lower layer. This difference in ratios



Fig. 13. A) NIP-FW plot with determined filter width. The circles show the relation between the number of inflection points and filter width after applying a Gaussian filter on the
upper (U1) and lower interface (L1) and the solid lines show the additional influence of the ‘small area’ filter (U2 and L2). B) Fold interface with identified hinges and inflection
points. C) Original and smoothed curvature with identified hinges and inflection points.

Table 2
Data for the natural multilayer fold train normalized by the fold arclength of the
lowermost interface. The data from both interfaces of an individual layer are pro-
cessed together. Upper and lower refer to the corresponding layers in the Fig. 12.
Letters below the parameters correspond to the definitions of amplitude, wave-
length, and thickness presented in section 2. With the exception of the ratios, all
actual values are multiplied by 1000.

Parameter Mean value Min Max Standard
deviation

Fold Upper Lower Upper Lower Upper Lower Upper Lower

L-Arclength 141 130 27.2 27.5 246 269 67.7 70.5
A-Amplitude
A 24.3 21.4 2.67 3.95 48.0 52.5 13.7 14.5
B 21.4 20.2 1.58 3.58 45.6 51.6 13.1 14.5
C 27.6 25.6 3.55 2.54 50.8 51.3 12.4 13.7
l-Wavelength
A 59.5 60.5 7.38 8.96 117 168 33.7 40.0
B 54.9 59.2 36.3 28.0 65.3 88.9 7.91 15.9
C 48.8 48.2 9.25 12.7 103 120 26.9 28.8
D 56.8 54.6 48.2 26.9 69.7 88.2 6.58 16.9
h-Thickness
A 18.0 8.02 13.5 6.34 23.6 10.3 2.97 1.21
B 18.7 7.97 e e e e e e

hLi=hhi 7.57 16.2 e e e e e e

L/h 8.13 16.9 1.56 2.73 15.5 35.9 4.03 9.74
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indicates that the fold development is controlled by the thicker
upper layer and the lower one followed more or less passively.
The other methods are ignored because they are unsuitable for the
multilayer case.
7. Discussion and conclusions

FGT estimates material properties and amount of shortening
from fold shape. Previously developed numerical tools for fold
geometry analysis either have a different focus or fail to work for
complex fold shapes, e.g. Isogon (Peña, 2001), FoldModeler
(Bobillo-Ares et al., 2004), Fold Profiler (Lisle et al., 2006), and
Bezier Fold Profiler (Liu et al., 2009a). Srivastava and Rastogi (2010)
developed HingeInflex to numerically determine inflection and
hinge points. Noise in the fold profile is reduced by fitting a poly-
nomial of user-specified order to the fold interface. Unfortunately,
HingeInflex is restricted to the analysis of fold shapes that can be
described by a single-value function. While this limitation is not
crucial for idealized low strain cases, the tool will fail for many
natural cases such as shown in Fig. 12.

In FGT, only definitions and methods are implemented that are
applicable to all fold shapes and invariant to rotation and dilation.
The key element to achieve this implementation is the use of
parametric curvature. Curvature noise is smoothed using
a Gaussian filter in combination with the ‘small area’ filter. The
choice of the filter width and size of the ‘small area’ has to be made
by the user and is therefore biased. However, a reasonable range of
parameters can be inferred from a NIP-FW diagram and the
consequence of a particular choice is immediately computed, and
the resulting hinge and inflection points plotted on the analysed
fold train. Various definitions of amplitude, wavelength, and
thickness are implemented so that the user can compare different
approaches or choose the specific definition that is most suitable
for the analysis of a particular fold train. Due to the lack of a robust
thickness definition in the literature, we developed new defini-
tions. If only the average thickness of an entire fold train is required,
the area is divided by the average fold train arclength. If individual
fold thicknesses are of interest, we partition the fold based on the
solution of the Laplacian and position of inflection points. This
measure is objective and reproducible.

The fold definition used in FGT, the segment of an interface
between two inflection points, only refers to an interface and not
a layer of finite thickness. This definition circumvents problems
with inflection and hinge point mismatches on the two interfaces
of a layer. Hence, the two interfaces are processed separately and all
geometrical parameters are computed for every individual fold on
an interface. The data from both interfaces are then used to
compute fold train averages.

The fold geometry analysis in FGT is robust and works for
generic fold shapes, including extremes such as circular fold trains.
It is fast and easy to use via graphical user interface. However,
quantifying fold geometry on its own is of limited interest. The
natural example analysed in section 6.2 demonstrates only the
applicability to complex fold shapes. The synthetic case, section 6.1,
is an example of the applicability to derive viscosity ratios and
shortening estimates. The estimation of the viscosity ratio based on
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the analytical method provides a close result only for the Biot
(1961) method with correction (Sherwin and Chapple, 1968).
Also, both numerical methods developed by Fletcher and Sherwin
(1978) and Schmalholz and Podladchikov (2001) approximate
fairly accurately the shortening and material properties. More
detailed work with synthetic models is required to study how
initial noise, effective viscosity ratio, and shortening influence the
reliability of the inferred estimates.
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Appendix A. Fold data structure

All fold data are stored in a single MATLAB structure array called
Fold. Every entry in Fold has a field Face with two entries, corre-
sponding to the upper and lower interface. Every entry in Face has
two fields X.Ori and Y.Ori that contain the x and y coordinates of
a single fold interface, respectively. If the input is specified as
a MATLAB file then it must contain the structure Fold.

Appendix B. Picture digitization in adobe illustrator

(1) Import image. (2) Draw separate contours of the upper and
lower interface using the Pen Tool (Bezier curve). In the case of
amultilayer, draw each fold on the separate layers. (3) Add points on
the curve with Object/Path/Add more anchor points to create around
20e40 points on the fold. (4) Use Object/Path/Simplify to produce
straight lines between the points. (5) Save data as a SVG file.
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